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FIG. 5. Moisture distribution in radial direction.

liquid layers. This phenomenon results in accelerating the
removal of gel and capillary water in concrete. Therefore, the
drying rate and the moisture loss at any time are functions of
temperature; the drying rate increases rapidly with increase of
temperature. Similar results have been reported previously
[4].
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normalizing constants
concentration
initial concentration
final concentration
diffusivity
functional information
differential entropy
length of diffusion cell
density distribution function
time
distance

ASAMEASURE ofthe disorder of a continuous distribution with
the density distribution function p(x), the differential entropy
can be calculated in the following way [1]:

H = -a1 f~", p(x)1og p(x)dx, (1)

where a1 is a constant.
In distributions with a large number of particles, e.g. as is

usually present in diffusion processes, the density distribution
of the residence probabilityp(x) in equation (l)can be replaced
by that of an appropriately normalized concentration c(x).

On the other hand, for time-dependent concentration
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FIG. 1. Time course of the 'functional information' FI(t) in
arbitrary units in a diffusion process.

error function series and Fourier series to occur at
t:::; 0.111E/D (with a change of notation).

The function FI(t) is neither restricted to diffusion processes
nor to one dimension. It generally gives a criterion for the
optimal moment in the measurement of time-dependent
distribution processes. As far as distributions can be described
by Fourier series, the squaring in equation (3)does not present
substantial difficulties because of the orthogonality of the
coefficients. In the particular case of diffusion between two
layers of the same size FI(t) yields plausible results:

(a) Diffusion experiments are all the more informative, i.e.
measured concentration differences are all the more
significant, the greater the initial concentration and the
dimension of the measuring cell.

(b) The optimal moment of measurement is directly
proportional to the square of the cell length and inversely
proportional to the diffusivity.

Moreover, the definition of FI(t) entails some philosophical
implications. The symbol FI(t) has been chosen to point to the
time-dependent course of distributions-as complementary
to equation (1) which rather stresses the structural aspects of
distributions. Besides, equation (3) demands modesty in
statements on processes with unknown initial and final states,
for F I(t) is then not defined. Indeed, one never knows exactly
how informative the present state of such processes may be,
and independent facts must be looked for to obtain adequate
extrapolations. The problem of mass distribution in the
universe may for instance be recalled as a prominent
paradigm. Similar considerations will apply to events in the
steady state.

On the other hand, as can be inferred from the above
diffusion example, the asymptotic approach to a final state
does not raise computational difficulties. The connection
between entropy, negentropy and information is all the same
broadly speaking. Recently Sato [4, 5] has suggested a
definition of negentropy as a thermodynamical quantity,
aiming at compatibility of the concepts of order, information,
non-equilibrium and work. He also made use of the difference
between the final and the present state of a thermodynamical
system: "Negentropy in the system is the difference between
the entropy in the final equilibrium state where it is assumed to
be isolated from the exterior and to undergo an irreversible
transformation within the system, and the entropy of the
system at present state."

The present paper tries to supplement the thermodynamic
and the statistic by kinetic considerations.
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x exp[ -(2n+ 1)2n:2Dt/E] cos [(2n+ 1)n:x/L], (2)

eo

FI(t) = 4a2c~L/n:2 L (2n+ 1)-2 exp [ -(2n+ Wn1Dt/I3]

n=O

because ofthe quadric premises (3),the summation in equation
(4) in principle covers an expression of the form y = z(l-z)
which obviously attains a maximum at z == 1/2. Figure 1
presents the time course of the function FI(t) as defined by
equations (3) and (4) in diffusion between two layers of equal
size.The maximum value of FI(t) amounts to ca. a2c~L/n2 and
is assumed at t :::; o.o7E/D.

This result shows a remarkable analogy with theoretical
calculations [3]. Unnam and Tenney [3] determine the effect
of zone size on the convergence of exact solutions for dilTusion
in single phase systems. With planar geometry they find a
cross-over in the number of series terms required by double

'"L exp [-(2n+ Wn1Dt/E] == 1/2,
n=O

distributions c(x, t) between two layers of equal size of a
dilTusant, the following equation is obtained [2]:

and

C = Co in 0 ~ x < L/2,

with the initial conditions

Equation (4) exhibits the expected properties, vanishing at t
= 0 and t == C1J, and attaining a maximum at

c(x,t) = (co/2)+(2co/n) L (-I)"(2n+ 1)-1
n=O

c = 0 in L/2 < x ~ L.

Substitution of equation (2) into equation (1) gives the very
result which is to be expected from the thermodynamic
viewpoint: entropy is increasing with time, attaining a
maximum at equilibrium, i.e. at equipartition.

When information and negentropy is equated, this means
that the initial state contains the most and the final state the
least amount of information. Statistically this is obvious, since
the initial distribution of the dilTusant is least probable, whilst
equipartition is most probable.

In the colloquial sense, gain in information is understood as
gain in knowledge. Applied to the simple case of diffusion, this
would mean to perform experiments to measure diflusivities,
and the knowledge of these and of the laws of diffusion would
result in the prediction of time-dependent changes in arbitrary
distributions. In this kind ofconsideration the least knowledge
about the process is available from the initial and final states­
both being independent of time-since knowledge of these
contains nothing abou t the preceding or impending processes.
Therefore, the most informative would be the intermediate
state which is equidistant from the initial and the final state.
The least squares principle lends itself to a mathematical
description of this 'functional information' in the process:

FI(t) = a2f:", [d~ .e -(d~.I+d;.J]dx, (3)

where a2 is a normalizing constant, suited for comparison of
different magnitudes; do .e = co(x) - c.(x) is the concentration
dilTerence between the initial and final distributions; do .•
= co(x) - c(x, t) and d e,, = c.(x) - c(x, t) are the concentration
differences between the initial (0) and instantaneous (t)
distribution and the final (e)and instantaneous (t) distribution,
respectively,

Substitution of equation (2) into equation (3) and
integration from 0 to 11 gives
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1"\O:\IE1"\CLATURE

c heat capacity
11 heat transfer coefficient
k thermal conductivity
L latent heat of fusion
Ste Stefan number, C,(Tm - Ta)/L
Ste' modified Stefan number, Cr<To- Tm)/ I,
t time
T temperature
V parametric variable
y space coordinate
Y dimensionless distance, hyjk,

Greek symbols
a thermal difTusivity
t: solid thickness
II dimensionless solid thickness. heik,
o dimensionless temperature, (T - Tm)/(To- Tm )

p density
r dimensionless time, a,h2t/k;

Subscripts
a ambient
f liquid phase
m freezing
o initial

solid phase
surface

I. I;-''TRODUCTIO~

THEO;-';E'DI~IESSIO~AL moving boundary problems associated
with freezing and melting have always been of great interest to
engineers and scientists. The problem has wide application,
e.g. in freezing and melting of lake ice, cooling oflarge masses

of igneous rock, solidification of castings and purification of
materials.

The problem is characterized by the existence of a moving
boundary resulting from phase change. Analytical solutions
are possible only for a few special classes of boundary and
initial conditions, for example, Stefan or Neumann's problems
[1]. For other more complicated boundary conditions,
different assumptions have to be used. Series solutions have
been attempted [2-5]. More recently, Foss [6] presented a
simple approximate solution to an important class of moving
boundary problems; the freezing and melting of lake ice. A
convective boundary was applied to the air-ice interface. The
solution compared closely with Westphal's more accurate
series solution [5]. However, the initial water temperature in
both cases was assumed to be at the fusion temperature, thus,
ignoring conduction in the liquid phase. This limits the
usefulness of the solutions in many practical applications.

This paper pre sents an approximate analytical solution to
the moving boundary problem associated with the freezing of
a semi-infinite phase-change medium due to convective
cooling in the fixed boundary and with an initial temperature
which can be higher than the fusion temperature.

2. STATEME1"\T OF TilE PROBLEM

The problem considers a semi-infinite body of phase change
medium extending from y = 0 to co. The initial temperature of
the liquid (To) is assumed to be uniform and higher than the
fusion temperature (T..J. Convective cooling is applied to the
fixed boundary (y = 0) at I ;;. 0 with a constant heat transfer

. coefficient (h) and a constant sub-freezing ambient
temperature (Ta) (Fig. 1).The problem can be divided into two:
before and after freezing at the free surface.

'Before freezing (I < ' m). the problem is relatively simple and




